The Stability Of Momentless Cylindrical Membrane Shell In Supersonic Gas Flow

The stability of momentless cylindrical membrane shell in the two-dimensional flow of gas is investigated here. The areas of instability are compared according to "piston" theory and the one of precise approximation, when the aerodynamical pressure dependence from the motion of membrane has non-local character of differential type. Unlike the "piston" theory, the calculations according to the theory of precise approximation show the instability of membrane under the small supersonic numbers of Mach. At the same time the upper verge (border) of stability area is considerably reduced as well.

Исследуется устойчивость безмоментной цилиндрической оболочки мембраны в двумерном потоке газа. Сравниваются области неустойчивости по "поршневой" теории и по уточненному приближению, когда зависимость аэродинамического давления от движения мембраны носит нелокальный характер дифференциального типа. В отличие от "поршневой", расчеты по уточненной теории показывают неустойчивость мембраны при малых сверхзвуковых числах Маха, а также ощутимо снижается верхняя граница области устойчивости.

Колебания безмоментной круговой цилиндрической оболочки мембраны в двумерном потоке газа описываются уравнениями:

\[
\rho_0 h \frac{\partial^2 w}{\partial t^2} + \rho_0 h \varepsilon \frac{\partial w}{\partial t} - N \frac{\partial^2 w}{\partial x^2} + \frac{Eh}{R^2(1-v^2)} w + \frac{\nu Eh}{R(1-v^2)} \frac{\partial u}{\partial x} + P = 0
\]

\[
\rho_0 h \frac{\partial^2 u}{\partial t^2} - \frac{Eh}{1-v^2} \frac{\partial^2 u}{\partial x^2} - \frac{\nu Eh}{R(1-v^2)} \frac{\partial w}{\partial x} = 0
\]

где \(u(x,t)\), \(w(x,t)\) - перемещения, \(\rho_0\) - плотность материала, \(h, R\) - соответственно, толщина и радиус срединной поверхности оболочки, \(\varepsilon\) - коэффициент затухания, \(v\) - коэффициент Пуассона, \(E\) - модуль Юнга, \(N\) - усилие, \(P(x,t)\) - аэродинамическое давление.

1. По точной теории для линеаризированного потенциального потока
идеального газа зависимость давления от производных прогиба представляется интегральным оператором с весьма сложным ядром [1]. Но при больших скоростях потока газа (т.е. при больших числах Маха \(M = U/a_0 \)) для упрощения задачи можно применить «поршневую» теорию [1], представив эту зависимость в виде (2)

\[
P = \rho a_0 \left(\frac{\partial w}{\partial t} + U \frac{\partial w}{\partial x} \right)
\]

где \(\rho \) – плотность газа, \(a_0 \) – скорость звука для невозмущенного потока газа, \(U \) – скорость потока газа.

Тогда система (1) примет следующий вид:

\[
\frac{\partial^2 w}{\partial t^2} + \varepsilon \frac{\partial w}{\partial t} - c_1^2 \frac{\partial^2 w}{\partial x^2} + \frac{c_2^2}{R} w + \frac{\nu c_2^2}{R} \frac{\partial w}{\partial x} + \gamma \left(\frac{\partial w}{\partial t} + U \frac{\partial w}{\partial x} \right) = 0
\]

\[
\frac{\partial^2 u}{\partial t^2} - c_2^2 \frac{\partial^2 u}{\partial x^2} - \frac{\nu c_2^2}{R} \frac{\partial w}{\partial x} = 0
\]

где \(c_1^2 = \frac{N}{\rho_0 h}, c_2^2 = \frac{E}{\rho_0 (1 - \nu^2)}, \gamma = \frac{\rho a_0}{\rho_0 h} \).

Представив решение в виде бегущих волн \(w = w_0 e^{i(\omega t - kx)}, \ u = u_0 e^{i(\omega t - kx)} \), получаем следующее дисперсионное уравнение:

\[
D(\omega, k) \equiv \left(\omega^2 - i(\varepsilon + \gamma)\omega - c_1^2 k^2 + i\gamma U k - \frac{c_2^2}{R} k^2 \right) \left(\omega^2 - c_2^2 k^2 \right) - \frac{\nu^2 c_2^2 k^2}{R^2} = 0 \quad (4)
\]

После введения безразмерных величин

\[
\alpha_1 = \frac{c_1}{a_0}, \quad \alpha_2 = \frac{c_2}{a_0}, \quad \alpha_3 = R k, \quad \alpha_4 = \frac{\rho}{\rho_0}, \quad \alpha_5 = \frac{h}{R}, \quad \lambda = \frac{\varepsilon}{\gamma}
\]

уравнение (4) примет следующий вид:

\[
\left(\Omega_0^2 - i \frac{\alpha_4}{\alpha_2 \alpha_3 \alpha_5} (\lambda + 1) \Omega_0 - \frac{\alpha_4}{\alpha_2^2} \right) \left(\Omega_0^2 - 1 \right) - \frac{\nu^2}{\alpha_5^2} = 0
\]

где \(\Omega_0 = \omega / c_2 k \).

Отделяя действительные и мнимые части (6), получим следующую систему:

\[
\begin{cases}
\left(\Omega_0^2 - \frac{\alpha_4}{\alpha_2^2} - \frac{1}{\alpha_5^2} \right) (\Omega_0^2 - 1) - \frac{\nu^2}{\alpha_5^2} = 0 \\
(\lambda + 1) \Omega_0 - \frac{M}{\alpha_2} (\Omega_0^2 - 1) = 0
\end{cases}
\]

из которой получим следующие соотношения между \(M \) и \(\lambda \) (фиг. 2):

\[
M_i = A_i (1 + \lambda), \quad \text{где} \quad A_i = \alpha_i \Omega_{0i}, \quad (i = 1, 2)
\]

\[
\Omega_{01} = \sqrt{\frac{\alpha_1^2 \alpha_2 + \alpha_3 \alpha_5^2 + 1 - \sqrt{(\alpha_1^2 \alpha_2 + \alpha_3 \alpha_5^2 - 1)^2 + 4 \nu^2 / \alpha_5^2}}{2}}
\]

35
Для зафиксированных $\alpha_1 = 0$, $\alpha_2 = 2$, $\alpha_3 = 0.4$, $\alpha_4 = 1/3 \cdot 10^{-3}$, $\alpha_5 = 0.01$, $v = 0.25$, $\lambda = 6$ в табл. 1 приведены значения действительных и мнимых частей двух фазовых скоростей $c = \omega/k$ при различных числах Маха, вычисленные из дисперсионного уравнения (6).

Построены графики действительных и мнимых частей двух фазовых скоростей $c = \omega/k$ при различных числах Маха.

<table>
<thead>
<tr>
<th>M</th>
<th>$\text{Re} C_1^*$</th>
<th>$\text{Im} C_1^*$</th>
<th>$\text{Re} C_2^*$</th>
<th>$\text{Im} C_2^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.962513</td>
<td>0.00184954</td>
<td>2.50514</td>
<td>0.139734</td>
</tr>
<tr>
<td>1.5</td>
<td>0.962506</td>
<td>0.00177571</td>
<td>2.50516</td>
<td>0.137683</td>
</tr>
<tr>
<td>2.0</td>
<td>0.962499</td>
<td>0.00170184</td>
<td>2.50517</td>
<td>0.135632</td>
</tr>
<tr>
<td>2.5</td>
<td>0.962493</td>
<td>0.00162793</td>
<td>2.50518</td>
<td>0.133581</td>
</tr>
<tr>
<td>3.0</td>
<td>0.962487</td>
<td>0.00155399</td>
<td>2.5052</td>
<td>0.13153</td>
</tr>
<tr>
<td>3.5</td>
<td>0.962481</td>
<td>0.00148002</td>
<td>2.50521</td>
<td>0.129479</td>
</tr>
<tr>
<td>4.0</td>
<td>0.962476</td>
<td>0.00140601</td>
<td>2.50524</td>
<td>0.127429</td>
</tr>
<tr>
<td>4.5</td>
<td>0.962471</td>
<td>0.00133198</td>
<td>2.50526</td>
<td>0.125378</td>
</tr>
<tr>
<td>5.0</td>
<td>0.962466</td>
<td>0.00125791</td>
<td>2.50528</td>
<td>0.123327</td>
</tr>
<tr>
<td>5.5</td>
<td>0.962461</td>
<td>0.00118382</td>
<td>2.50531</td>
<td>0.121277</td>
</tr>
<tr>
<td>6.0</td>
<td>0.962457</td>
<td>0.00110971</td>
<td>2.50533</td>
<td>0.119226</td>
</tr>
<tr>
<td>6.5</td>
<td>0.962453</td>
<td>0.00103557</td>
<td>2.50536</td>
<td>0.117176</td>
</tr>
<tr>
<td>7.0</td>
<td>0.962449</td>
<td>0.00096141</td>
<td>2.50539</td>
<td>0.115126</td>
</tr>
<tr>
<td>7.5</td>
<td>0.962466</td>
<td>0.00088723</td>
<td>2.50542</td>
<td>0.113075</td>
</tr>
<tr>
<td>8.0</td>
<td>0.962442</td>
<td>0.000813032</td>
<td>2.50545</td>
<td>0.111025</td>
</tr>
<tr>
<td>8.5</td>
<td>0.962439</td>
<td>0.000738818</td>
<td>2.50548</td>
<td>0.108975</td>
</tr>
<tr>
<td>9.0</td>
<td>0.962437</td>
<td>0.000664588</td>
<td>2.50552</td>
<td>0.106925</td>
</tr>
</tbody>
</table>
Неустойчивость мембраны соответствует отрицательным значениям мнимых частей ω [1], и как видно из табл. 1 и фиг. 2, $M = 13.5$ является точкой, с
которой начинается область неустойчивости для больших чисел Маха. Назовем ее "верхней границей" устойчивости.

\[
\frac{D_P}{Dt} = \rho a_0 \frac{D}{Dt} \left[\frac{Dw}{Dt} - \frac{a_0 w}{2R} \right] + \chi \rho a_0^3 \left[\frac{\partial^2 w}{\partial x^2} + \frac{3}{4R^2} \right]
\]

где \(\chi \) - поправочный коэффициент (\(\chi = 0 \) соответствует "поршневому" приближению).

Представим решение в виде бегущих волн \(w = w_0 \exp \left(i(\omega t - kx)\right) \), \(u = u_0 \exp \left(i(\omega t - kx)\right) \), получаем следующее дисперсионное уравнение:

\[
D(\omega, k) \equiv 0
\]

Перейдя на безразмерные величины (5), уравнение (10) примет вид:

\[
\left(i \left(\Omega_0 - \frac{M-1}{\alpha_2} \right) \left(\Omega_0^2 - \frac{\alpha_1^2}{\alpha_2^2} \frac{1}{\alpha_5} + \frac{\alpha_4}{\alpha_3 \alpha_5} \right) - \frac{\alpha_4}{\alpha_3 \alpha_5} \left(\Omega_0 - \frac{M-1}{\alpha_2} \right) \right) \times

\times \left(\frac{M}{\alpha_2} - \Omega_0 (\lambda + 1) \right) + \frac{\alpha_4}{\alpha_3 \alpha_5} \left(\chi - \frac{3\chi}{4\alpha_5^2} \right) \left(1 - \Omega_0^2 \right) + i \frac{\nu^2}{\alpha_5^2} \left(\Omega_0 - \frac{M-1}{\alpha_2} \right) = 0
\]

действительные и мнимые части которого составляют систему (12)

\[
\begin{align*}
\left(\Omega_0^2 - \frac{\alpha_1^2}{\alpha_2^2} \frac{1}{\alpha_5} + \frac{\alpha_4}{\alpha_3 \alpha_5} \right) (1 - \Omega_0^2) + \frac{\nu^2}{\alpha_5^2} &= 0 \\
\left(\Omega_0 - \frac{M-1}{\alpha_2} \right) \left(\frac{M}{\alpha_2} - \Omega_0 (\lambda + 1) \right) - \frac{1}{\alpha_2^2} \left(\chi - \frac{3\chi}{4\alpha_5^2} \right) &= 0
\end{align*}
\]

Для \(\chi = 0 \) из (12) получаем

\[
M_i = A_i (1 + \lambda), \quad M_j = A_j + 1, \text{ гдe } A_i = \alpha_i \Omega_{o_i}, \quad i = 1, 2,
\]

\[
\Omega_{o_i} = \sqrt{\frac{\alpha_i^2 + \frac{1}{\alpha_3^2} - \frac{\alpha_4}{\alpha_5^2} + 1 - \left(\frac{\alpha_1^2}{\alpha_2^2} + \frac{1}{\alpha_5^2} - \frac{\alpha_4}{2\alpha_2^2 \alpha_3^2 \alpha_5} \right)^2 + 4\nu^2}{2\alpha_5^2}}
\]
При \(\chi \neq 0 \) из (12) получаем

\[
\lambda = \frac{1}{\alpha_2\Omega_0} \left(\frac{4\alpha_2^3 \chi - 3\chi}{4\alpha_2^3 (\alpha_2\Omega_0 - M + 1)} + M \right) - 1
\]

(14)

что соответствует кривым \(M_1(\lambda) \), \(M_2(\lambda) \) для \(\Omega_{01} \), \(\Omega_{02} \). Линии (13) являются асимптотами для кривых \(M_1(\lambda) \) и \(M_2(\lambda) \).

Таблица 2

<table>
<thead>
<tr>
<th>(M)</th>
<th>Re (C_1^*)</th>
<th>Im (C_1^*)</th>
<th>Re (C_2^*)</th>
<th>Im (C_2^*)</th>
<th>Re (C_3^*)</th>
<th>Im (C_3^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>0.0499267</td>
<td>0.0329894</td>
<td>0.962428</td>
<td>0.00033733</td>
<td>2.5045</td>
<td>0.123949</td>
</tr>
<tr>
<td>1.5</td>
<td>0.250102</td>
<td>0.0334784</td>
<td>0.962428</td>
<td>-0.006</td>
<td>2.50441</td>
<td>0.120948</td>
</tr>
<tr>
<td>2.0</td>
<td>0.500289</td>
<td>0.045</td>
<td>0.962479</td>
<td>-0.015</td>
<td>2.50427</td>
<td>0.116816</td>
</tr>
<tr>
<td>2.5</td>
<td>0.749887</td>
<td>0.0401898</td>
<td>0.963164</td>
<td>-0.015</td>
<td>2.50406</td>
<td>0.112093</td>
</tr>
<tr>
<td>3.0</td>
<td>0.963423</td>
<td>0.029</td>
<td>1</td>
<td>0</td>
<td>2.50375</td>
<td>0.106484</td>
</tr>
<tr>
<td>3.5</td>
<td>0.963323</td>
<td>0.0061325</td>
<td>1.25063</td>
<td>0.0360398</td>
<td>2.50328</td>
<td>0.0994585</td>
</tr>
<tr>
<td>4.0</td>
<td>0.962808</td>
<td>0.0039216</td>
<td>1.50197</td>
<td>0.0449458</td>
<td>2.50251</td>
<td>0.0899489</td>
</tr>
<tr>
<td>4.5</td>
<td>0.96266</td>
<td>0.00305583</td>
<td>1.75342</td>
<td>0.0575963</td>
<td>2.50125</td>
<td>0.0754349</td>
</tr>
<tr>
<td>5.0</td>
<td>0.962592</td>
<td>0.00256915</td>
<td>2.00482</td>
<td>0.0826633</td>
<td>2.49996</td>
<td>0.0481952</td>
</tr>
<tr>
<td>5.5</td>
<td>0.962553</td>
<td>0.0022419</td>
<td>2.23528</td>
<td>0.146038</td>
<td>2.51958</td>
<td>-0.0174533</td>
</tr>
<tr>
<td>6.0</td>
<td>0.962526</td>
<td>0.00199662</td>
<td>2.37037</td>
<td>0.205046</td>
<td>2.63456</td>
<td>-0.0787681</td>
</tr>
</tbody>
</table>
Как видно из табл. 2, в отличие от "поршневой" теории, по уточненной теории имеет место также неустойчивость при малых сверхзвуковых числах Маха [3,4,5]. Для больших же чисел Маха неустойчивость начинается уже с $M = 5.4$ (по "поршневой" теории неустойчивость начиналась с $M = 13.5$).

В табл. 3 приведены области неустойчивостей для различных χ.

<table>
<thead>
<tr>
<th>Число Маха</th>
<th>ReC^*</th>
<th>ImC^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>0.962507</td>
<td>0.00179902</td>
</tr>
<tr>
<td>7.0</td>
<td>0.962493</td>
<td>0.0016316</td>
</tr>
</tbody>
</table>
Уже при малых χ уточненная теория дает существенную разницу как для малых, так и для больших сверхзвуковых чисел Маха, по сравнению с "поршневой" теорией, значительно уменьшает область устойчивости, ощутиво снижая ее верхнюю границу.

Автор выражает благодарность профессору М.В. Белубекяну за помощь и ценные указания.

Таблица 3

<table>
<thead>
<tr>
<th>Область неустойчивости</th>
<th>$\chi = 0.1$</th>
<th>$\chi = 0.2$</th>
<th>$\chi = 0.3$</th>
<th>$\chi = 0.4$</th>
<th>$\chi = 0.5$</th>
<th>$\chi = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$c \ M = 2.9$ по 2.99</td>
<td>$c \ M = 2.9$ по 2.99</td>
<td>$c \ M = 2.9$ по 2.99</td>
<td>$c \ M = 2.8$ по 2.99</td>
<td>$c \ M = 2.8$ по 2.99</td>
<td>$c \ M = 2.6$ по 2.99</td>
</tr>
<tr>
<td></td>
<td>$c \ M = 6.1$</td>
<td>$c \ M = 6$</td>
<td>$c \ M = 5.9$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Область неустойчивости</th>
<th>$\chi = 1.5$</th>
<th>$\chi = 2$</th>
<th>$\chi = 2.5$</th>
<th>$\chi = 3$</th>
<th>$\chi = 3.5$</th>
<th>$\chi = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$c \ M = 5.9$ по 2.99</td>
<td>$c \ M = 5.8$</td>
<td>$c \ M = 5.8$</td>
<td>$c \ M = 5.7$</td>
<td>$c \ M = 5.6$</td>
<td>$c \ M = 5.6$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Область неустойчивости</th>
<th>$\chi = 2.5$</th>
<th>$\chi = 3$</th>
<th>$\chi = 3.5$</th>
<th>$\chi = 4$</th>
<th>$\chi = 4.5$</th>
<th>$\chi = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$c \ M = 5.8$</td>
<td>$c \ M = 5.7$</td>
<td>$c \ M = 5.6$</td>
<td>$c \ M = 5.6$</td>
<td>$c \ M = 5.6$</td>
<td>$c \ M = 5.4$</td>
</tr>
</tbody>
</table>
ЛИТЕРАТУРА

Ереванский государственный университет

Поступила в редакцию 28.09.2005